55 research outputs found

    Distributional semantics and machine learning for statistical machine translation

    Get PDF
    [EU]Lan honetan semantika distribuzionalaren eta ikasketa automatikoaren erabilera aztertzen dugu itzulpen automatiko estatistikoa hobetzeko. Bide horretan, erregresio logistikoan oinarritutako ikasketa automatikoko eredu bat proposatzen dugu hitz-segiden itzulpen- probabilitatea modu dinamikoan modelatzeko. Proposatutako eredua itzulpen automatiko estatistikoko ohiko itzulpen-probabilitateen orokortze bat dela frogatzen dugu, eta testuinguruko nahiz semantika distribuzionaleko informazioa barneratzeko baliatu ezaugarri lexiko, hitz-cluster eta hitzen errepresentazio bektorialen bidez. Horretaz gain, semantika distribuzionaleko ezagutza itzulpen automatiko estatistikoan txertatzeko beste hurbilpen bat lantzen dugu: hitzen errepresentazio bektorial elebidunak erabiltzea hitz-segiden itzulpenen antzekotasuna modelatzeko. Gure esperimentuek proposatutako ereduen baliagarritasuna erakusten dute, emaitza itxaropentsuak eskuratuz oinarrizko sistema sendo baten gainean. Era berean, gure lanak ekarpen garrantzitsuak egiten ditu errepresentazio bektorialen mapaketa elebidunei eta hitzen errepresentazio bektorialetan oinarritutako hitz-segiden antzekotasun neurriei dagokienean, itzulpen automatikoaz haratago balio propio bat dutenak semantika distribuzionalaren arloan.[EN]In this work, we explore the use of distributional semantics and machine learning to improve statistical machine translation. For that purpose, we propose the use of a logistic regression based machine learning model for dynamic phrase translation probability mod- eling. We prove that the proposed model can be seen as a generalization of the standard translation probabilities used in statistical machine translation, and use it to incorporate context and distributional semantic information through lexical, word cluster and word embedding features. Apart from that, we explore the use of word embeddings for phrase translation probability scoring as an alternative approach to incorporate distributional semantic knowledge into statistical machine translation. Our experiments show the effectiveness of the proposed models, achieving promising results over a strong baseline. At the same time, our work makes important contributions in relation to bilingual word embedding mappings and word embedding based phrase similarity measures, which go be- yond machine translation and have an intrinsic value in the field of distributional semantics

    Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond

    Full text link
    We introduce an architecture to learn joint multilingual sentence representations for 93 languages, belonging to more than 30 different language families and written in 28 different scripts. Our system uses a single BiLSTM encoder with a shared BPE vocabulary for all languages, which is coupled with an auxiliary decoder and trained on publicly available parallel corpora. This enables us to learn a classifier on top of the resulting sentence embeddings using English annotated data only, and transfer it to any of the 93 languages without any modification. Our approach sets a new state-of-the-art on zero-shot cross-lingual natural language inference for all the 14 languages in the XNLI dataset but one. We also achieve very competitive results in cross-lingual document classification (MLDoc dataset). Our sentence embeddings are also strong at parallel corpus mining, establishing a new state-of-the-art in the BUCC shared task for 3 of its 4 language pairs. Finally, we introduce a new test set of aligned sentences in 122 languages based on the Tatoeba corpus, and show that our sentence embeddings obtain strong results in multilingual similarity search even for low-resource languages. Our PyTorch implementation, pre-trained encoder and the multilingual test set will be freely available

    Translation Artifacts in Cross-lingual Transfer Learning

    Full text link
    Both human and machine translation play a central role in cross-lingual transfer learning: many multilingual datasets have been created through professional translation services, and using machine translation to translate either the test set or the training set is a widely used transfer technique. In this paper, we show that such translation process can introduce subtle artifacts that have a notable impact in existing cross-lingual models. For instance, in natural language inference, translating the premise and the hypothesis independently can reduce the lexical overlap between them, which current models are highly sensitive to. We show that some previous findings in cross-lingual transfer learning need to be reconsidered in the light of this phenomenon. Based on the gained insights, we also improve the state-of-the-art in XNLI for the translate-test and zero-shot approaches by 4.3 and 2.8 points, respectively.Comment: EMNLP 202

    On the Cross-lingual Transferability of Monolingual Representations

    Full text link
    State-of-the-art unsupervised multilingual models (e.g., multilingual BERT) have been shown to generalize in a zero-shot cross-lingual setting. This generalization ability has been attributed to the use of a shared subword vocabulary and joint training across multiple languages giving rise to deep multilingual abstractions. We evaluate this hypothesis by designing an alternative approach that transfers a monolingual model to new languages at the lexical level. More concretely, we first train a transformer-based masked language model on one language, and transfer it to a new language by learning a new embedding matrix with the same masked language modeling objective, freezing parameters of all other layers. This approach does not rely on a shared vocabulary or joint training. However, we show that it is competitive with multilingual BERT on standard cross-lingual classification benchmarks and on a new Cross-lingual Question Answering Dataset (XQuAD). Our results contradict common beliefs of the basis of the generalization ability of multilingual models and suggest that deep monolingual models learn some abstractions that generalize across languages. We also release XQuAD as a more comprehensive cross-lingual benchmark, which comprises 240 paragraphs and 1190 question-answer pairs from SQuAD v1.1 translated into ten languages by professional translators.Comment: ACL 202

    A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings

    Full text link
    Recent work has managed to learn cross-lingual word embeddings without parallel data by mapping monolingual embeddings to a shared space through adversarial training. However, their evaluation has focused on favorable conditions, using comparable corpora or closely-related languages, and we show that they often fail in more realistic scenarios. This work proposes an alternative approach based on a fully unsupervised initialization that explicitly exploits the structural similarity of the embeddings, and a robust self-learning algorithm that iteratively improves this solution. Our method succeeds in all tested scenarios and obtains the best published results in standard datasets, even surpassing previous supervised systems. Our implementation is released as an open source project at https://github.com/artetxem/vecmapComment: ACL 201

    An Effective Approach to Unsupervised Machine Translation

    Full text link
    While machine translation has traditionally relied on large amounts of parallel corpora, a recent research line has managed to train both Neural Machine Translation (NMT) and Statistical Machine Translation (SMT) systems using monolingual corpora only. In this paper, we identify and address several deficiencies of existing unsupervised SMT approaches by exploiting subword information, developing a theoretically well founded unsupervised tuning method, and incorporating a joint refinement procedure. Moreover, we use our improved SMT system to initialize a dual NMT model, which is further fine-tuned through on-the-fly back-translation. Together, we obtain large improvements over the previous state-of-the-art in unsupervised machine translation. For instance, we get 22.5 BLEU points in English-to-German WMT 2014, 5.5 points more than the previous best unsupervised system, and 0.5 points more than the (supervised) shared task winner back in 2014.Comment: ACL 201

    Bilingual Lexicon Induction through Unsupervised Machine Translation

    Full text link
    A recent research line has obtained strong results on bilingual lexicon induction by aligning independently trained word embeddings in two languages and using the resulting cross-lingual embeddings to induce word translation pairs through nearest neighbor or related retrieval methods. In this paper, we propose an alternative approach to this problem that builds on the recent work on unsupervised machine translation. This way, instead of directly inducing a bilingual lexicon from cross-lingual embeddings, we use them to build a phrase-table, combine it with a language model, and use the resulting machine translation system to generate a synthetic parallel corpus, from which we extract the bilingual lexicon using statistical word alignment techniques. As such, our method can work with any word embedding and cross-lingual mapping technique, and it does not require any additional resource besides the monolingual corpus used to train the embeddings. When evaluated on the exact same cross-lingual embeddings, our proposed method obtains an average improvement of 6 accuracy points over nearest neighbor and 4 points over CSLS retrieval, establishing a new state-of-the-art in the standard MUSE dataset.Comment: ACL 201
    corecore